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Abstract: This article gives an overview of recent progress in protein-protein docking and it identifies several directions 
for future research. Recent results from the CAPRI blind docking experiments show that docking algorithms are steadily 
improving in both reliability and accuracy. Current docking algorithms employ a range of efficient search and scoring 
strategies, including e.g. fast Fourier transform correlations, geometric hashing, and Monte Carlo techniques. These ap-
proaches can often produce a relatively small list of up to a few thousand orientations, amongst which a near-native bind-
ing mode is often observed. However, despite the use of improved scoring functions which typically include models of 
desolvation, hydrophobicity, and electrostatics, current algorithms still have difficulty in identifying the correct solution 
from the list of false positives, or decoys. Nonetheless, significant progress is being made through better use of bioinfor-
matics, biochemical, and biophysical information such as e.g. sequence conservation analysis, protein interaction data-
bases, alanine scanning, and NMR residual dipolar coupling restraints to help identify key binding residues. Promising 
new approaches to incorporate models of protein flexibility during docking are being developed, including the use of mo-
lecular dynamics snapshots, rotameric and off-rotamer searches, internal coordinate mechanics, and principal component 
analysis based techniques. Some investigators now use explicit solvent models in their docking protocols. Many of these 
approaches can be computationally intensive, although new silicon chip technologies such as programmable graphics 
processor units are beginning to offer competitive alternatives to conventional high performance computer systems. As 
cryo-EM techniques improve apace, docking NMR and X-ray protein structures into low resolution EM density maps is 
helping to bridge the resolution gap between these complementary techniques. The use of symmetry and fragment assem-
bly constraints are also helping to make possible docking-based predictions of large multimeric protein complexes. In the 
near future, the closer integration of docking algorithms with protein interface prediction software, structural databases, 
and sequence analysis techniques should help produce better predictions of protein interaction networks and more accu-
rate structural models of the fundamental molecular interactions within the cell.  

Keywords: Protein-protein docking, protein-protein interactions, docking algorithms, data-driven docking, molecular dynam-
ics, protein structure databases, protein interface prediction, CAPRI. 

INTRODUCTION 

 Proteins play a central role in many cellular processes, 
ranging from enzyme catalysis and inhibition to signal trans-
duction and gene expression. Proteins often perform their 
functions by interacting with other proteins to form protein-
protein complexes. These complexes may exist as short-lived 
transitory associations, as in e.g. enzyme catalysis, or as 
long-lived multimeric systems such as the ribosome, tran-
scription factors, cell surface and ion channel proteins. Using 
yeast two-hybrid (Y2H) and tandem-affinity-purification 
mass spectrometry (TAP-MS) techniques, large-scale func-
tional genomic studies are producing interaction maps which 
describe complex networks of protein-protein interactions 
(PPIs) within a cell [1, 2]. High throughput Y2H and TAP-
MS experiments have been applied on a genomic scale to 
yeast [3-7]. Bioinformatics approaches such as threading, 
phylogenetic profiling, gene neighbourhood and gene fusion 
analysis, and in silico two-hybrid methods are being used 
with increasing success to predict PPIs directly from gene 
sequences of yeast and other organisms (for recent reviews 
see e.g., references [8-13]). 
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 Protein docking is the task of calculating the three-
dimensional (3D) structure of a protein complex starting 
from the individual structures of the constituent proteins. In 
other words, in contrast to the above approaches which de-
termine or predict which proteins interact, protein docking 
aims to predict how proteins interact. Based on analyses of 
known protein structures, it has been estimated that the natu-
ral repertoir of protein folds may be of the order of 1,000 
[14]. By applying similar reasoning to known yeast interac-
tions, Aloy and Russell [15] estimate that each protein will 
have around 9 interaction partners and that most protein in-
teractions will belong to one of around 10,000 basic types, of 
which we currently know only around 2,000. Therefore, 
there are potentially many thousands of as yet completely 
unknown PPIs. Crystallographic (X-ray) and nuclear mag-
netic resonance (NMR) structure determination techniques 
have improved dramatically in recent years, with around 
12,000 protein structures having been deposited in the Pro-
tein Data Bank (PDB [16]). However, only a very small pro-
portion of these structures correspond to protein-protein 
complexes. Due to a number of practical difficulties, it 
seems unlikely that it will become possible to solve the 
structures of protein complexes using high-throughput struc-
tural genomics techniques in the forseeable future [17]. 
Hence, computational techniques such as protein docking 
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will become an increasingly important way to help under-
stand the molecular mechanisms of biological systems [18, 
19]. Therapeutic drugs often modulate or block PPIs, and 
therefore PPIs represent an important class of drug target 
[20, 21]. 

 Like all good scientific problems, the protein docking 
problem is easy to state but hard to solve. Almost 30 years 
ago, Wodak and Janin [22] described the first automated 
docking algorithm to predict the 3D interaction between bo-
vine pancreatic trypsin and its natural inhibitor. Since then, 
protein docking has matured into a distinct computational 
discipline which brings together knowledge and techniques 
from a broad spectrum of sciences including physics, chem-
istry, biology, mathematics, and computing with the aim of 
modeling in silico how macromolecules such as proteins 
behave. Current docking algorithms employ a range of effi-
cient search and energy-based scoring strategies, including 
e.g. fast Fourier transform (FFT) correlations, geometric 
hashing, and Monte Carlo (MC) techniques. These ap-
proaches generally produce a relatively small list of up to a 
few thousand putative docking orientations, amongst which a 
near-native binding mode is often observed. However,  
despite the use of improved scoring functions which typi-
cally include models of desolvation, hydrophobicity, and 
electrostatics, current algorithms still have difficulty in iden-
tifying the best solution from the list of false positives, or 
decoys. Hence many docking algorithms now use a two-step 
search and scoring procedure, in which ab initio techniques 
are used to generate an initial list of decoys which are then 
re-scored using available biophysical information (data-
driven docking) and knowledge-based potentials derived 
from analyses of existing protein-protein interfaces [23-25]. 

 There are several reviews of protein-protein docking 
techniques [26-35], and the performance of many current 
docking algorithms has been tested in the CAPRI (Critical 
Assessment of PRedicted Interactions) blind docking ex-
periment [36-42]. The CAPRI experiment and its partner 
conference, Modeling of Protein Interactions in Genomes 
[43], have been instrumental in spurring new developments 
and providing a level playing field against which different 
docking algorithms may be tested and compared. This article 
gives an overview of recent progress in protein-protein dock-
ing and identifies several directions for future research. In-
cremental developments of the more established docking 
algorithms are generally not described here. Instead, the fo-
cus is on the salient or promising features of new ap-
proaches, several of which are data-based or data-driven, and 
many of which have not yet been tested in CAPRI.  

AB INITIO RIGID BODY DOCKING 

 Many docking algorithms begin with a simplified rigid 
body representation of protein shape obtained by projecting 
each protein onto a regular 3D Cartesian grid, and by distin-
guishing grid cells according to whether they are near or 
intersect the protein surface, or are deeply buried within the 
core of the protein. Conceptually, a docking search is then 
performed by scoring the degree of overlap between pairs of 
grids in different relative orientations. However, performing 
a blind six-dimensional (6D) translational and rotational 
docking search typically entails evaluating in the order of 

billions (O(109)) of distinct grid overlaps. Hence, in practice, 
a variety of techniques are used to accelerate the calculation. 
For example, in the Fourier-based approaches the grid repre-
sentations are first transformed into a set of orthogonal basis 
functions in order to perform the overlap calculations very 
efficiently using FFT techniques [44]. 3D FFT approaches 
have since been incorporated in several correlation-based 
docking algorithms [26, 45-51]. Eisenstein et al. [52] give a 
recent overview of the principles of grid-based FFT docking 
approaches. Grid overlaps may also be calculated rapidly 
using fast bit-wise arithmetic operations [53]. Unlike the 3D 
grid-based FFT correlation algorithms, the grid-free spheri-
cal polar Fourier (SPF) approach allows rotational rather 
than translational correlations to be calculated rapidly using 
one-dimensional (1D) FFTs [54]. In the geometric hashing 
approach, each protein surface is first pre-processed to give a 
list of a few hundred critical points (“pits”, “caps”, and 
“belts”) which are then compared in a clique-detection algo-
rithm to generate a relatively small number (O(104)) of trial 
docking orientations for grid scoring [55]. 

 Solvation and desolvation effects are often considered as 
a surface phenomenon. All of the above ab initio docking 
algorithms incorporate an excluded volume model of shape 
complementarity, either explicitly using surface skins in the 
spherical polar Fourier (SPF) approach [54], or implicitly by 
assigning different values to surface and interior cells in the 
FFT grid representations [44]. The scoring functions in these 
algorithms favour orientations which occlude large surface 
cell volumes or bury large surface areas. Such approaches 
are largely consistent with the shell model of hydration [56]. 
However, as Elcock et al. [27] point out, most shape-based 
scoring functions generally do not discriminate between bur-
ial of different atom or side chain types because a single wa-
ter probe radius or grid cell size is used to define the protein 
surface. Bhat et al. [57] demonstrated that using a variable 
radius probe sphere provides a straight-forward but superior 
way to represent the hydrophobicity of protein surface at-
oms. However, this has not yet been tested in existing dock-
ing algorithms. 

 The above approaches generally produce a list a few 
thousand candidate docking orientations which usually con-
tains some near-native docking poses, provided the starting 
conformations are sufficiently similar to those of the  
complex. On a modern personal computer (PC), the calcula-
tion typically takes from a few minutes for the geometric 
hashing and polar Fourier approaches to a few hours for the 
FFT-based approaches. Hence, searching the 6D rigid-body 
space for putative docking orientations is not rate-limiting. 
However, existing scoring functions still have difficulty in 
distinguishing the near-native solutions from the list of de-
coys. Additionally, if the conformational changes on binding 
are large, then rigid body approaches can completely fail to 
produce any near-natives in the decoy list. Analysis of re-
sults in the CAPRI experiment shows that the best measure 
of target difficulty is the degree of conformational change 
between the bound and unbound protein structures [38, 42]. 

 Fig. 1 shows the structures of two recent CAPRI targets, 
T21 and T26, which exemplify protein-protein complexes 
that are relatively hard and fairly easy to dock, respectively. 
Target T26 consists of a complex between a peptidoglycan-
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associated lipoprotein (Pal), and the colicin tolerance-like 
protein (TolB) in which Pal binds across the bowl of the 
TolB C-terminal -propeller domain, burying a large total 
solvent-accessible surface area of around 2,600Å2 [58]. Al-
though both Tolb, and Pal change conformation on binding, 
the backbone motions are relatively small (0.97Å and 0.41Å 
RMS for the TolB -propeller and Pal domains, respec-
tively), with much of the overall TolB conformational 
change appearing allosterically in the N-terminal domain 
[58]. There is some motion of the Pal residues E293, Y294, 
and E338, although only E338 changes rotameric conforma-
tion on binding. Hence, compared to many other CAPRI 
targets, the overall conformational changes in T26 are small. 
Additionally, there is considerable prior knowledge in the 
literature about the general mode of interaction between 
these proteins (e.g., [59]), which several predictor groups 
appear to have used. Overall, some 13 groups (including two 
solutions using Hex) obtained acceptable predictions, and 8 
groups achieved medium accuracy predictions for this target, 
where the definitions of “acceptable,” “medium,” and “high 
accuracy” follow the assessment criteria of Méndez et al. 
[40]. These results indicate that, perhaps with the help of 
some prior knowledge, it is straight-forward for many cur-
rent algorithms to make good docking predictions when the 
interface area of the complex is large and when the confor-
mational differences between the unbound and bound struc-
tures are small. 

 In target T21, comprising a complex between the yeast 
origin recognition complex protein Orc1 and the silent in-
formation regulator protein Sir1 [60], the buried surface area 
is a relatively moderate 1,300Å2, but three Sir1 interfacial 
side chains (Y489, K522, and H524) change conformation 
on binding, and there are extensive conformational diffe-
rences in the Orc1 small helical H domain (residues P97-
A127) between the unbound and bound crystal structures 
(C  deviation: 1.63Å RMS). Consequently, this complex 
proved to be rather difficult to predict well in CAPRI. For 
example, the Hex shape-based soft docking correlation pro-

duced many false-positive orientations with “side-to-side” 
domain contacts exhibiting much larger buried surface areas 
than that of the correct “head-to-head” orientation of the 
crystallographic complex (Fig. 1), and it would appear that 
several other predictor groups encountered similar difficul-
ties with this target. Nonetheless, 5 groups (Hirokawa, 
Weng, Vajda, Bonvin, and Gray) produced acceptable pre-
dictions, and 3 groups (Ten Eyck, Bonvin, and Gray) 
achieved medium predictions (M. F. Lensink and S. J. Wo-
dak, personal communication). However, no high accuracy 
solutions were obtained despite the availability of consider-
able mutagenic evidence for likely interface residues on both 
protein partners [61]. Hence, the main challenges in protein 
docking today are to be able to generate reliably trial con-
formations which closely resemble those of the native com-
plex, and to devise improved scoring functions which can 
correctly distinguish near-native docking orientations from a 
list of highly complementary decoys.  

SOFT DOCKING TECHNIQUES 

 While the ability to include protein flexibility in docking 
is obviously desirable, most docking algorithms have until 
recently been obliged to assume that the proteins are rigid, at 
least at the backbone level, as a matter of computational ex-
pediency. However, most rigid body algorithms are nonethe-
less able to accommodate a degree of conformational flexi-
bility through the use of soft scoring functions. For example, 
the binary core/interior scoring function embodied in the 
Cartesian FFT algorithms acts as a simple step-like van der 
Waals potential [62]. Using a coarse FFT grid implies using 
low order correlations and also serves to soften the potential 
[46]. The grid-free SPF approach [54] generally uses rela-
tively low order polynomial powers in the range N=25–32, 
whereas the grid-based FFT approaches typically use trigo-
nometric powers of N=64 or N=128. Using a low-pass filter 
in high resolution FFT docking also softens the scoring func-
tion, and has been shown to improve the results for grid-
based FFT docking [63]. One advantage of the SPF approach 

 

 

 

 

 

 

 

 

Fig. (1). CAPRI targets T21 (Orc1/Sir1) and T26 (TolB/Pal), as examples of relatively difficult and straight-forward complexes to dock, 
respectively. T21 (left) is coloured as grey: bound Orc1 backbone; blue: unbound Orc1 backbone (H domain in orange); yellow: unbound 
Sir1 van der Waals surface; pink: Sir1 surface patches corresponding to known interface residues V490, R493, D503, and L504 [61]. T26 
(right) is coloured as grey: bound TolB backbone; blue: unbound TolB backbone; yellow: unbound Pal van der Waals surface; pink: Pal sur-
face patches corresponding to known interface residues T93, G101, E102, and E130 [59]. 
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compared to the grid-based FFT is that the polynomial order 
is independent of the search step size. Hence it is straight 
forward to calculate low order correlations with fine search 
increments. In a recent adaptation of the SPF approach, Su-
mikoshi et al. [64] perform very fast low order N=10–12 soft 
docking correlations. The rigid body search part of this ap-
proach is similar to the Hex algorithm [54]. However, Sumi-
koshi et al. use Legendre polynomials for the radial func-
tions and calculate translations by numerical integration, 
whereas Hex uses Laguerre-Gaussian polynomials in order 
to calculate translations analytically [65]. With the help of 
some biochemical knowledge from the literature, the ab ini-
tio Hex correlation approach achieved 1 high accuracy, 1 
medium accuracy, and 2 acceptable predictions in rounds 3–
5 of CAPRI [66]. 

 In order to incorporate a simple model of hydrophobicity 
into their FFT approach, Berchanski et al. [67] adapted the 
MolFit FFT algorithm to use the complex part of each grid 
cell value to give additional weight to complementary ar-
rangements of hydrophobic residues. This was reported to 
improve significantly the rank of near native docking orien-
tations for both tetrameric oligomers and hetero-dimers. 
Similarly, Heuser and Schomburg [68] modified their 
Ckordo FFT correlation algorithm to assign different shape 
complementarity weights to different amino acid types. The 
weights were determined by non-linear minimisation of 
docking scores from the Docking Benchmark complexes 
[69]. Different weights are used for different classes of com-
plex but the general effect is to downgrade the contribution 
of flexible side chains such as Arg, Lys, Leu, Ser, and Thr, 
and to upgrade the docking score for hydrophobic side 
chains with high interface propensities such as e.g. Tyr and 
Trp. This approach is reported to give significant enrichment 

of near native orientations for all classes of complex [68]. 
Fig. 2 illustrates weighted soft docking Fourier correlations 
using colour-coded SPF shape density functions calculated 
for the T21 Orc1/Sir1 complex. 

PREDICTING PROTEIN INTERACTION SURFACES 

 Rather than attempting to calculate protein docking inter-
actions directly using ab initio approaches, it might be sup-
posed that substantially fewer false-positive orientations 
would be obtained if one could first identify or predict the 
interaction surfaces on each protein partner. However, al-
though the properties of protein-protein interfaces have been 
analysed in considerable detail [70-76], it remains a signifi-
cant challenge to predict reliably the locations of protein-
protein interaction surfaces using computational techniques 
alone [71, 75]. Nonetheless, some progress is being made. 
For example, Bogan and Thorn [72] compared differences in 
binding free energies following alanine scanning mutagene-
sis to show that often a small set of core interface residues 
contributes the majority of the binding free energy of a com-
plex. They proposed a “hot-spot/O-ring” model of protein 
binding sites, in which the core hot spot residues are sur-
rounded by a ring of energetically unimportant residues 
whose main role is to occlude bulk solvent from the hot spot. 
This study found that occlusion of solvent from the protein-
protein interface is a necessary condition for binding, but 
there is no direct correlation between the experimentally 
determined binding free energy and buried surface area. 
However, the bulky side chains of Trp, Arg, and Tyr appear 
in hot spots with high frequencies (21%, 13%, and 12%, 
respectively), whereas Leu, Met, Ser, Thr, and Val residues 
are rarely observed in hot spots (3% frequency or less) [72]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Real 3D Fourier expansions of the bound conformations of Orc1 and Sir1 (CAPRI target T21), coloured as in Figure 1. Horizontally 
from top left to bottom right: the SPF steric density functions of Orc1 and Sir1 shown at polar expansion orders N=16, 20, 25, and 30, fol-
lowed by a Gaussian van der Waals surface (bottom middle), and the van der Waals fused sphere representation (bottom right). It should be 
noted that SPF densities are 3D functions which are here contoured to give smooth 2D van der Waals surfaces for visualisation purposes. The 
Hex docking correlation algorithm typically uses N=16 and N=25 expansions [54]. The real part of a conventional complex Fourier shape 
representation, calculated by many FFT-based docking algorithms, would most closely resemble the N=30 image shown here (bottom left). 
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 Studies of existing protein complexes by Chakrabarti and 
Janin [73] and Bahadur et al. [74] support a similar “core-
rim” model of protein binding sites, in which the core resi-
dues resemble the composition of protein interiors and the 
rim residues, which remain to some extent solvent-accessible 
in the complex, resemble more the general composition of 
surface residues. Several studies have shown that alanine 
scanning hot spot residues correlate well with conserved 
residue locations in multiple sequence alignments (MSA) 
[77-79]. However, using such observations directly to pre-
dict putative docking epitopes requires a number of ortholo-
gous sequences to be available [80]. Interestingly, Halperin 
et al. [77] found that the local packing density around hot 
spot and conserved residues across binding interfaces is 
higher than expected, being reminiscent to that of protein 
cores, which suggests that good packing plays an important 
role in stabilising protein-protein interfaces. However, it 
should be noted that 60% of the alanine scan interfaces in 
this study belonged to homodimers. On the other hand, based 
on a study of 64 protein-protein interfaces (42 homodimers, 
12 heterodimers and 10 transient complexes), Caffrey et al. 
[81] argue that interface surfaces are rarely significantly 
more conserved than other surface patches, and that using 
residue conservation alone is generally not sufficient for 
complete and accurate prediction of protein-protein inter-
faces. 

 Although the evidence to support the core-rim model is 
compelling, it is difficult to articulate simple rules with 
which unknown binding sites may be identified. Hence, ma-
chine learning techniques are being used to develop auto-
mated protein-protein interface prediction software [75,82-
90]. These systems are typically trained using various com-
binations of e.g., buried surface areas, desolvation and elec-
trostatic interaction energies, hydrophobicity scores, and 
residue conservation scores. Because different investigators 
used different learning datasets and because results are pre-
sented in different ways, it is difficult to make direct com-
parisons between individual approaches. However, as a very 
broad summary of recent results, current algorithms can gen-
erally predict the locations of protein interfaces with around 
50% overlap between predicted and native interface residues 
in up to around 70% of complexes. Hence it would appear 
that such approaches are becoming useful and practical pre-
dictive tools. For example, Bradford and Westhead [85] used 
their SVM-based approach to predict, retrospectively, sig-
nificant portions of the interfaces for 11 out of 15 selected 
CAPRI targets. 

 In many interface prediction algorithms, the manner in 
which surface patches are defined is critical. The optimal 
docking area (ODA) approach of Fernández-Recio et al. 
[88], which is based entirely on a desolvation model, is able 
to identify over 80% of protein interfaces in a test set of 66 
non-obligate hetero-complexes. In a study of 97 such com-
plexes, Burgoyne and Jackson [75] found that electrostatic 
complementarity showed little if any predictive capability, 
and that residue conservation had lower predictive power 
than expected, which tends to support the results of Caffrey 
et al. [81]. In agreement with the results of Fernández-Recio 
et al., they found that cleft desolvation is the most strongly 
predictive characteristic of protein-protein interfaces [75]. 
Interestingly, Chung et al. [89] found that using crystallo-

graphic B factors to weight residue conservation scores was 
advantageous. It is also worth noting that de Vries et al. [91] 
showed that intramolecular surface contact propensities may 
also be used to infer protein interface regions. 

STRUCTURAL PROTEIN-PROTEIN INTERACTION 
DATABASES 

 Databases of protein interactions are becoming important 
assets with which to predict the structures of protein  
complexes. Although not formally a database, the Protein-
Protein Docking Benchmark [69], a collection of 84 non-
redundant protein complexes for which both the bound and 
unbound structures are available, provides a valuable re-
source for testing new docking algorithms. Several further 
databases of structural protein-protein interaction data have 
been compiled, e.g., PQS [92, 93], DIP [94], BIND [95], 
DIMER [96], BID [97], 3DID [98], PIBASE [99], iPfam 
[100], Interdom [101], Interpare [102], 3D Complex [103], 
Dockground [104], I2I [105], SCOPPI [106], and 
PROTCOM [107]. Most of these databases provide at least 
the identities of domain interface residues, along with inter-
face statistics such as residue propensities and buried surface 
areas. Some accept geometric queries to search for similar 
molecular surface patches [94, 105], or physico-chemically 
labeled patches [105]. The PQS system distinguishes inter-
faces between biologically active subunits from crystal pack-
ing contacts and hence provides a significantly richer source 
of protein-protein interface data than the original experimen-
tally determined structures [93]. The comprehensive 
PIBASE [99], which is freely downloadable, draws data 
from the PDB, PQS, BIND, and DIP databases to provide 
data on around 160,000 domain pairs between 105,000 do-
mains from 2,100 SCOP families [99]. The 
MULTIPROSPECTOR system uses a modified version of 
the PROSPECTOR threading algorithm to query the DIMER 
structural database in order to predict the interaction partners 
of a given query sequence [96]. The InterPreTS system [108] 
uses a similar approach with the 3DID database. The original 
version of this database (DBID) was relatively small, com-
prising 1,131 complexes, and in one of the examples de-
scribed by the authors, only 35 out of a total of 2,590 puta-
tive yeast interaction pairs mapped to actual 3D structures 
[109]. The more extensive 3DID database (34,944 intermo-
lecular domain interactions) has since been made available 
by the same group [98]. The above databases store informa-
tion primarily on pair-wise protein interfaces. However, 
many proteins carry out their function as multimeric sys-
tems. Hence the recent 3D Complex database of Levy et al. 
[103] will be particularly useful for studying the structure, 
function, and evolutionary relationships of multimeric pro-
tein complexes. 

 Obviously, current databases contain only a very small 
fraction of all possible protein-protein complexes. However, 
as structural genomics initiatives continue to populate the 
space of protein 3D structures, it seems clear that using 
structural database systems to perform docking by homology 
will become an increasingly powerful approach. For exam-
ple, Heuser et al. [101] used the Interdom database to re-
score and improve FFT-based docking predictions for 16 out 
of 17 enzyme-inhibitor complexes and 2 out of 3 antibody-
antigen complexes for which the structures of known homo-
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logues existed. Korkin et al. [110] used comparative patch 
analysis queries on the PIBASE database [99] to predict cor-
rectly 70% of a test set of 20 complexes in the database 
compared to a 30% prediction rate using PatchDock [111]. 
Similarly, Kundrotas et al. [112] used structural queries to 
search the ProtCom database [107] in order to retrieve the 
correct domain partner of the query protein for 86% of the 
database of 418 complexes. 

KNOWLEDGE-BASED DOCKING POTENTIALS 

 One natural way to exploit existing structural protein-
protein interaction data is in the development of knowledge-
based protein docking potentials. For example, Jiang et al. 
[113] developed a potential of mean force (PMF) approach 
based on hydrophobicity and hydrogen-bonding propensities, 
and parametrised using just 4 atoms types. This PMF model 
reproduces experimental binding energies for a test set of 28 
complexes with a correlation coefficient of 0.75. Zhang et al. 
[114] developed the DFIRE (distance-scale finite ideal gas 
reference state) potential for scoring protein-protein, protein-
DNA, and protein-ligand interactions. Using 19 atom types 
for protein-protein interactions, the DFIRE potential gives a 
good correlation (r=0.73) between the calculated and ex-
perimentally observed binding energies for a test set of 82 
protein-protein complexes. Using a linear programming 
technique, Tobi and Bahar [115] developed a protein dock-
ing potential (PDP) based on 3 interaction centres (the side 
chain centroid, and backbone amide N and carbonyl O at-
oms) for each residue type. This PDP was able to identify a 
near-native conformation within the top 100 solutions in 10 
out of 17 unbound-unbound test cases. 

 Although there is little doubt as to the importance of 
electrostatics in macromolecular interactions [116], and pro-
gress continues to be made in developing improved solvent 
models and fast Poisson-Boltzmann solvers [117], it appears 
that the electrostatic models used in current docking algo-
rithms do not yet reliably help to identify near-native orien-
tations. This limitation seems to be due, at least in part, to 
the need to use relatively simplistic physical models that 
afford rapid calculation over millions of trial orientations. 
For example, electrostatic correlations have been incorpo-
rated in several ab initio correlation search algorithms [118, 
54, 47, 119, 120]. Gabb et al. [118] found that using a simple 
charge model for polar atoms improved the rank of near-
native complexes in all cases tested. Similarly, Mandell et al. 
[47] found that their Poisson-Boltzmann electrostatic model 
was consistently beneficial when docking a set of complexes 
which are known to be electrostatically rate-accelerated. On 
the other hand, studies by Ritchie and Kemp [54] and 
Heifetz et al. [120], which used an accurate in vacuo SPF 
Coulomb representation, and the DELPHI linearised Pois-
son-Boltzmann model [121], respectively, both found that 
including electrostatics in the scoring function was beneficial 
in the majority of cases, but worsened the rank of near-native 
orientations in a significant number of others. Hence it 
would appear that the results of electrostatic calculations are 
rather sensitive to the type of model used and the specific 
complexes on which the model is tested. Sheinerman et al. 
[116] argue that due to desolvation of polar groups, protein-
protein electrostatic interactions are generally net destabiliz-
ing. Hence we should perhaps not expect to see much benefit 

from using electrostatics in docking until we treat desolva-
tion adequately. As an important step towards addressing 
this difficulty, Cerutti et al. [122] developed the ELSCA 
(energy by linear superposition of corrections approxima-
tion) knowledge-based potential method of including solva-
tion effects into the linearised Poisson-Boltzmann/Surface-
Area (PBSA) electrostatic model. This approach uses 16 
basic atom types, each of which is endowed with Gaussian-
type potential functions, parametrised using 45 protein-
protein complexes from the Docking Benchmark [69]. Al-
though the ELSCA potential has not yet been used in predic-
tive docking, it reproduces calculated PBSA energies of the 
45 bound and unbound test complexes with correlation coef-
ficients of 0.96 and 0.79, respectively. 

PCA OF KNOWLEDGE-BASED POTENTIALS 

 Two groups have described useful enhancements to Fou-
rier-based rigid body search algorithms. Sumikoshi et al. 
[64] developed a fast low resolution SPF method of calculat-
ing docking energies using the ACE statistical potential of 
Zhang et al. [123]. By applying a principal component 
analysis (PCA) to the many cross terms in the ACE potential 
and by selecting only the 2 most significant eigenvector 
components, Sumikoshi et al. are able to calculate the most 
significant contributions to the ACE energy very efficiently 
[64]. On a test set of 6 unbound enzyme-inhibitor complexes 
using low order N=10–12 correlations, this approach is re-
ported to give at least one near-native solution within the top 
1,000 orientations in around 40 seconds on an ordinary PC. 
The PIPER program of Kozakov et al. [51] implements a 
similar PCA dimensionality reduction approach in the con-
text of FFT-based docking. By counting the frequency of 
pair-wise atom occurrences in actual complexes compared to 
the corresponding frequencies found in a large number of ab 
initio decoys, Kozakov et al. [51] developed their “decoys as 
reference state” (DARS) knowledge-based potential. Apply-
ing a PCA to the cross terms in the DARS potential allows 
the leading contributions to be evaluated very efficiently via 
a small number of FFTs. In tests on the Docking Benchmark 
complexes, PIPER is reported to give up to 50% more near-
native conformations than ZDOCK using the earlier atomic 
contact potential (ACP) scoring function [124]. 

DATA-DRIVEN DOCKING 

 If 3D structural information for a complex is not avail-
able, which is currently often the case, it is still extremely 
useful to be able to predict the location of a protein’s func-
tional site(s), or even just a single functional residue. Here, 
again, a variety of data-driven techniques are actively being 
developed. For example, the evolutionary trace (ET) ap-
proach of Lichtarge et al. [125] exploits the fact that func-
tionally important residues are often conserved across spe-
cies. ET techniques have been used successfully to identify 
protein functional sites [126] and to train support vector ma-
chines (SVMs) [127] or linear discriminant function (LDF) 
classifiers [128] to predict protein-protein interfaces. Se-
quence-based approaches are also able to identify protein-
protein interface residues by locating correlated mutations in 
multiple sequence alignments for pairs of interacting pro-
teins across different organisms [129, 8]. However, Halperin 
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et al. [130] suggest that such approaches may be limited to a 
relatively small number of protein families. 

 Nuclear Overhauser Effect (NOE) NMR has long been a 
powerful experimental tool with which to analyse the struc-
tures and dynamics of proteins in solution. Recent advances 
in the use of additional NMR data such as chemical shift 
perturbations (CSPs) and residual dipolar couplings (RDCs) 
allow new data-driven docking techniques to determine the 
solution structures of even relatively large and sometimes 
transient protein-protein and protein-DNA complexes [131]. 
In the HADDOCK approach [132], this experimental infor-
mation is expressed in terms of ambiguous interaction re-
straints (AIRs) [133]. The generic <r-6>-1/6 form of an AIR 
acts like a potential energy which boosts the docking score 
whenever one or more pairs of restraint atoms occur close 
together across the protein-protein interface. Combining CSP 
and RDC AIRs with additional NMR information such as 
diffusion anisotropy relaxation data can also substantially 
improve data-driven docking [134, 135]. Other types of bio-
chemical or biophysical data such as mutagenesis, H/D ex-
change [136], and 13C-labeling data may also be usefully 
transformed into AIRs [32]. In favourable cases, as few as 3 
restraints are sufficient to resolve the docked structure of a 
protein-protein complex [137, 138]. In recent rounds of 
CAPRI, the results obtained from HADDOCK have often 
been impressive, particularly for those targets for which ex-
perimental information was available [139]. Data-driven 
docking has also been applied successfully in protein-DNA 
docking [140]. Mass spectrometry radical probe shielding 
data has been used as a novel biophysical filter in the FFT-
based PROXIMO docking algorithm [141]. Small-angle X-
ray scattering data has been used to rank rigid body docking 
models of protein complexes in solution [142]. 

 In addition to the general AIR formulation, several 
groups have developed a variety of strategies to incorporate 
biological information into their docking algorithms. For 
example, ZDOCK allows “blocking” residues to be defined, 
which are then given zero desolvation energy to bias those 
residues against appearing in the interface [143]. PatchDock 
allows known binding site residues to be specified in order to 
promote the scores for interfaces that contain a given per-
centage of those residues [111]. Smith et al. [144] use 3D 
conservation analysis [145] to identify putative interface 
residues for manual assessment of 3D-Dock predictions. Hex 
allows up to 2 search angle constraints to be specified to 
constrain its rotational correlation to remain near the starting 
orientation [54]. A similar cone angle constraint may be 
specified in 3D-Dock [144]. 

 FFT correlation techniques are increasingly being used to 
fit high resolution X-ray protein structures into low resolu-
tion cryo-EM density maps [146-151]. Although the resolu-
tion of cryo-EM techniques is beginning to approach that of 
X-ray crystallography [152], such fitting or “interior dock-
ing” techniques are likely to remain very powerful ap-
proaches for determining atomic resolution structures of very 
large complexes which are unlikely to be solved using stan-
dard crystallographic techniques [148, 153]. It is interesting 
to note that interior docking algorithms are also beginning to 
incorporate biochemical knowledge from multiple biophysi-

cal sources in order to locate or anchor multimeric subunits 
in noisy low resolution EM density maps [154]. 

RE-SCORING DOCKING DECOYS 

 Several docking studies have indicated that low resolu-
tion scoring functions can often indicate the general location 
of a binding site, and that energetically favourable orienta-
tions tend to cluster around the native complex orientation 
[155, 156, 47, 157]. For example, Fernández-Recio et al. 
[157] mapped the distribution of predicted protein-protein 
docking orientations onto the receptor surface to show that 
highly populated regions often correspond to the actual bind-
ing site. Using an energy-based weight function, the contri-
butions of surface residues to the interface was calculated to 
give a normalised interface propensity (NIP) for each resi-
due. In a test set of 21 complexes, 80% of the predicted NIP 
residues were correctly located in native interfaces [157]. 
This approach has contributed to the very high success rate 
of the ICM software for many of the CAPRI targets [37, 40, 
158]. Bernauer et al. [159] used a Voronoi tesselation repre-
sentation of protein shape and a SVM-based machine learn-
ing approach to re-score successfully HADDOCK predic-
tions for 4 out of 5 CAPRI targets. SVM techniques have 
also been used to re-score and discriminate RosettaDock 
energy funnels with encouraging results (O. Schueler-
Furman, personal communication). Using the DFIRE knowl-
edge-based potential, Zhang et al. [25] are able to place a 
near-native solution generally within the top 30 out of 2,000 
ZDOCK decoys. When combined with clustering and man-
ual selection based on biochemical knowledge, this approach 
gave reasonable predictions for 4 of the 6 targets in round 4 
of CAPRI [40]. Although clustering is not normally consid-
ered as a scoring function per se, it has been shown that clus-
tering uniformly sampled low energy ab initio FFT docking 
orientations to detect attractive energy basins can provide a 
simple but effective way to identify near-native binding ori-
entations [47, 160, 161, 162, 163]. Marcia et al. [164] de-
scribe an iterative quadratic approximation method for find-
ing the global docking minimum of a funnel-shaped energy 
landscape containing multiple local minima. 

 Two recent studies have investigated the use of protein-
protein interface prediction algorithms as a way to re-score 
and filter conventional ab inito docking results. Gottschalk et 
al. [165] used the ProMate interface prediction algorithm 
[83] to re-rank the top 10,000 structures from FTDOCK runs 
on 21 unbound-unbound enzyme-inhibitor complexes. They 
compared the utility of their scoring function over random 
picking using a hypergeometric distribution. This combined 
docking and filtering approach produced at least 1 low RMS 
structure within the top 10 solutions in 15 of the 21 com-
plexes, and the filter was found to enhance with statistical 
significance the FTDOCK scores in 77% of cases. In a simi-
lar study, Duan et al. [166] applied a residue conservation 
and physico-chemical scoring function to re-rank 10,000 
FTDOCK structures for 59 unbound-unbound Docking 
Benchmark complexes. For the 48 complexes for which 
structural homologues exist, the filter was able to eliminate 
up to 86% of the FTDOCK structures while retaining the 
best near-native structure within the remaining list. 
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 Using combinations of scoring functions can also im-
prove docking results. For example, Murphy et al. [167] 
showed that using RPscore [168] and ACP [123] together 
gave better discrimination of near-native orientations. Liu et 
al. [169] developed the CFPScore function which was 
trained using 4 terms (PFM [113], packing density, contact 
size, and geometric complementarity) and which can distin-
guish true biological interfaces from crystal contact artifacts 
with an error rate of around 5%. In rounds 3–5 of CAPRI, 
Wiehe et al. [143] used biochemical information from the 
literature to define blocking residues to pre-filter FFT 
ZDOCK scans, and the top 2,000 decoys were then re-scored 
using the RDOCK desolvation and electrostatic model [24]. 
M-ZDOCK was used instead of ZDOCK for symmetrical 
targets. Overall, this approach produced 3 high accuracy, 3 
medium accuracy, and 1 acceptable predictions [40]. The 
automated ClusPro server of Comeau et al. [170] uses 
ZDOCK or DOT for the FFT scan phase and then re-ranks 
the top 2,000 solutions using a greedy clustering algorithm. 
This approach achieved 1 high accuracy, 1 medium accu-
racy, and 2 acceptable CAPRI predictions. Using the unsu-
pervised FFT-based GRAMM-X approach with conjugate 
gradient minimisation of a soft Lennard-Jones potential fol-
lowed by re-scoring using evolutionary conservation analysis 
and phylogenetic residue contact preferences, Tovchigrechko 
and Vakser [163] achieved 2 medium accuracy CAPRI pre-
dictions. Tress et al. [171] used MSA and ET information to 
re-score GRAMM and Hex ab initio predictions for 7 out of 
12 CAPRI targets. This gave 3 acceptable predictions [40], 
which is a rather impressive result for a non-structural se-
quence analysis based approach. After the CAPRI results 
were published, Camacho et al. [172] used CHARMm 
minimisation followed by re-scoring with the ACP potential 
[123] as implemented in the FastContact program [173] to 
re-rank the predictions of 6 targets from each participating 
group that achieved a near-native solution. Strikingly, the 
best FastContact score corresponded to the lowest ligand 
RMSD orientation in 16 out of 17 prediction sets. 

MODELING SIDE-CHAIN FLEXIBILITY 

 When a pair of proteins form a complex, there is often a 
degree of structural rearrangement on going from the un-
bound to the bound conformations. Such induced fit effects 
can sometimes involve substantial changes of side chain tor-
sion angles, particularly for flexible residues such as Lys and 
Arg. However, it is difficult to predict which side chains, if 
any, might change conformation on binding. Kimura et al. 
[174] argue that from a dynamical point of view there is in-
sufficient time available during a collision encounter for ex-
tensive conformational rearrangements to take place. Using 
short time-scale simulations with explicit solvent, Kimura et 
al. showed that, when properly solvated, certain key inter-
face residues generally adopt the same conformation in the 
unbound and bound structures whereas peripheral interface 
residues adopt a range of rotameric states. In other words, 
specific residues act as ready-made recognition motifs for 
docking [174]. Based on a subsequent molecular dynamics 
(MD) analysis of 11 complexes, Rajamani et al. [175] pro-
posed a two-step binding model in which the first stage of 
complex formation often involves burial of one or more key 
“anchor residues” in a precursor encounter complex. These 

residues, typically located on the smaller partner, often cor-
respond to alanine-scan hot spot residues, burial of which 
provides a significant proportion of the binding free energy 
of the complex. Once the anchors become docked in an en-
counter complex, the second stage of binding then involves 
peripheral interface or “latch” residues adjusting their con-
formations to provide the remainder of the binding free en-
ergy [175]. Camacho [176] used the notion of anchor resi-
dues to good effect for several CAPRI targets. Analysing 
side chain conformations after short MD simulations of the 
starting conformations allowed several hot spot interface 
residues to be identified as key anchor positions for the 
ClusPro/SmoothDock docking protocol [177]. This approach 
achieved 2 high accuracy, 2 medium accuracy, and 1 accept-
able predictions in CAPRI rounds 3–5 [40]. 

 Rather than attempting to predict interface residues a 
priori, the RosettaDock algorithm [178, 179] uses a multi-
stage docking protocol which begins with a fast low resolu-
tion rigid body Monte Carlo (MC) rotation/translation search 
using simple residue-based potentials. This simulates the 
initial diffusional encounter between the proteins. Putative 
complexes are then refined using a further rigid body MC 
optimisation of fixed backbones with simultaneous sampling 
and minimisation of side chain conformations using a back-
bone-dependent rotamer library. Approximately O(10)5 MC 
simulations are carried out per complex on a supercomputing 
cluster. The resulting solutions are scored using a detailed 
molecular mechanics (MM) energy function which includes 
solvation and hydrogen bond terms, and are then clustered 
for final ranking based on calculated energies and cluster 
size. In CAPRI rounds 3–5, this approach produced 2 high 
accuracy and 2 medium accuracy predictions for the targets 
attempted [40], with total computing times of around 50 
CPU-days per target [178]. Wang et al. [180] use a modified 
version of RosettaDock which samples and minimises off-
rotamer side chain conformations in order to achieve a better 
model of side chain flexibility than the former rigid-body 
plus rotamer-based approximation. Using this approach with 
the RosettaDock MC minimisation algorithm gave very good 
predictions for 6 out of 8 targets in CAPRI rounds 4 and 5 
[181], which were amongst the best predictions over all 
CAPRI participants.  

 Carter et al. [50] used FTDOCK to perform an FFT scan 
of C[ ]-trimmed structures to provided 10,000 putative ori-
entations which were scored using residue pair potentials 
[168], and the best 10 complexes were rebuilt using the 
Multidock rotamer refinement procedure [182]. Evolutionary 
Trace (ET) [125] analyses and the biochemical literature 
were used to help select predictions for some targets. This 
approach produced 2 medium accuracy and 3 acceptable 
predictions in CAPRI rounds 3–5 [40]. The ICM-DISCO 
algorithm [183, 184] also uses a two-stage search and re-
finement protocol. Initial encounter complexes are simulated 
using a rigid body pseudo Brownian motion algorithm with 
potentials pre-calculated on a 3D grid. The best 400 orienta-
tions are re-scored using a solvent-accessible area desolva-
tion model, and side chain orientations are then optimised 
using biased probability minimisation. This approach, which 
takes from around 1 to up to 50 CPU-days of computation 
per complex [184], produced 2 high accuracy, 4 medium 
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accuracy, and 2 acceptable predictions in CAPRI rounds 3–5 
[40]. 

 The ATTRACT algorithm of Zacharias [185] incorpo-
rates a reduced protein model using just 2 or 3 pseudo atoms 
per residue, where each pseudo atom represents the locus of 
a 12-6 Lennard-Jones type potential. This simplified poten-
tial allows fast optimisation of rotational and translational 
space to be applied to multiple starting orientations. Flexibil-
ity is modeled using a side chain multi-copy approach. For 
unbound docking, ATTRACT is reported to produce a near-
native orientation generally within the top 40 solutions. In 
rounds 3–5 of CAPRI, this approach gave 1 high accuracy 
and 2 medium accuracy predictions out of 5 targets at-
tempted [186]. 

MODELING BACKBONE FLEXIBILITY 

 In a docking and MD study of the barnase/barstar com-
plex, Ehrlich et al. [187] showed that even small backbone 
deformations can have as much impact on docking predic-
tions as changes in side chain rotameric states, and that si-
multaneous treatment of backbone and side chain conforma-
tions is required for a complete picture of protein-protein 
binding. However, incorporating full backbone flexibility 
into protein docking simulations largely amounts to combin-
ing protein folding with protein docking, which is essentially 
an intractable task on current computer hardware. Nonethe-
less, several investigators are developing ways of introduc-
ing limited or simplified models of backbone flexibility into 
their docking algorithms. For example, flexible loops are 
commonly found at protein surfaces and often form a sig-
nificant part of a protein-protein interface. Such loops are 
sometimes highly disordered in monomeric crystal structures 
and only become resolved in a fixed conformation in the 
complex. Bastard et al. [188] incorporated their multi-copy 
MC (MC2) approach for flexible protein-ligand docking 
[189] into the ATTRACT program. This modified approach 
was applied to 8 protein complexes, of which 4 corresponded 
to “difficult” targets in the Docking Benchmark [69]. In all 
but one case the approach was reported to improve docking 
results compared to docking only the unbound conforma-
tions. Schneidman et al. [111] extended the PatchDock geo-
metric hashing approach to permit a simple model of back-
bone flexibility through the incorporation of hinge-bending 
regions (FlexDock) and to model cyclic symmetry 
(SymmDock). This suite of programs has consistently per-
formed well in CAPRI, achieving acceptable or better pre-
dictions for 8 of the 9 rounds 3–5 targets, including re-
markably good predictions for T8 (nidogen/flexible 3-
domain laminin), and the challenging targets T9 (LicT ho-
modimer) and T10 (TBEV trimer), both of which involved 
flexible docking of symmetrical subunits [190, 191]. In the 
HADDOCK protocol, several of the CAPRI target structures 
were subjected to MD simulations and typically 10–11 MD 
snapshots were selected for multi-copy docking [139]. Inter-
faces were initially predicted using PPISP algorithm of Chen 
and Zhou [86], which is available as a web service 
(pipe.scs.fsu.edu/ppisp.html). The HADDOCK approach 
produced 2 high accuracy and 2 medium accuracy predic-
tions in CAPRI rounds 3–5 [40]. 

 Several groups have used principal component analysis 
(PCA) of MD trajectories to generate protein conformations 
for docking [144,186,192-195]. The result of a PCA is a ma-
trix of eigenvectors and a list of associated eigenvalues 
which together describe the principal components and ampli-
tudes, respectively, of the internal motions within a protein. 
Often, these motions are concerted or collective. For exam-
ple, one of the eigenvectors might correspond to the flexing 
of an entire -helix about a hinge region. Typically, most of 
the internal motions within a protein can be adequately de-
scribed by the first few eigenvectors [196, 197]. Hence a 
PCA analysis may be considered as a form of dimensionality 
reduction. Because the eigenvectors are orthogonal, they 
may be used to sample conformational space in a regular 
manner [66, 194]. This approach has been used successfully 
to model protein flexibility in protein-ligand docking [193, 
194]. Although the computational cost of MD simulations 
will likely remain a bottleneck for docking purposes, MD-
PCA would seem to provide a promising way to identify 
deformable residues or hinge-bending regions [198]. 

 A detailed study by Smith et al. [195] showed that pro-
tein conformations from MD trajectories of unbound 
subunits generally sample part, but not all, of the conforma-
tional space corresponding to the bound proteins. MD con-
formations were docked in a multi-copy approach in which 
the starting conformations were clustered into 2 clusters for 
each protein. The central member of each cluster was taken 
as the representative structure to be docked along with the 
original unbound conformation. Hence, ((2+1) (2+1))=9 
cross dockings were performed for each complex. This ap-
proach was applied to 20 complexes. In some cases, docking 
MD structures gave better results than docking only the un-
bound structures, but in other cases the overall docking re-
sults were worse. However, this somewhat inconclusive re-
sult may be due to the small number of cross dockings per-
formed per complex (FTDOCK computation times are 
around 1 day per docking), and because each cross docking 
run adds a lot of noise in the form of further false-positive 
orientations. Nonetheless, one very significant finding of 
Smith et al.’s study was that side-chain conformations in the 
core region of protein-protein interfaces were consistently 
less likely to change rotamer conformation than the periph-
eral interface residues. This is consistent with the explicit 
solvent MD results of Camacho et al. [174, 175]. Smith et al. 
[195] suggest a possible future strategy would be to perform 
fast rigid body core-core docking followed by MD on both 
proteins together, provided of course that the core regions 
can first be predicted with confidence. In CAPRI round 3–5, 
Smith et al. [144] used the 3D-Dock suite to dock represen-
tative MD structures for several targets. By using knowledge 
from the literature and conservation analysis to help identify 
good starting orientations, this combined approach generated 
3 medium accuracy and 4 acceptable predictions out of 9 
targets. 

 A similar MD and ensemble docking study by Grünberg 
et al. [199] used the fast shape-only Hex correlation function 
[54] to cross dock ((10+1) (10+1))=121 principal compo-
nent restrained MD (PCR-MD) and unbound structures for 
each of 17 protein-protein complexes. This study showed 
that even this relatively sparse coverage of conformations 
was able to given more and better near-native complexes 
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than docking the unbound structures alone. Remarkably, this 
enhancement appeared to be largely uncorrelated with the 
degree of similarity of the individual conformations to the 
bound form. In other words, the ensembles of structures ap-
peared to contain multiple complementary conformations. 
Taking into consideration the physical rates of protein-
protein collisions in solution, the rate at which proteins may 
dynamically exchange conformations, and the limited time 
available for proteins to reach their bound conformations 
during a collision event, Grünberg et al. argue that these re-
sults support the notion of a three-step docking mechanism 
of diffusion/collision, conformation selection, and induced 
fit [199]. 

 As an alternative to performing expensive MD simula-
tions, essential dynamics (ED) eigenvectors may be calcu-
lated using fast distance constraint ED (DCED) techniques 
[200]. We used Hex to dock multiple DCED-generated con-
formations for several of the CAPRI rounds 3–5 targets [66]. 
Our results for shape-only DCED multiconformer docking 
showed that the DCED approach gave a moderate but con-
sistent improvement over docking unbound or model-built 
starting structures. This approach subsequently produced two 
acceptable predictions for CAPRI target T26 (TolB/Pal), the 
better of which had ligand and interface RMSDs of 3.35Å 
and 2.11Å, respectively. However, because this solution was 
not energy-minimised, it had a relatively high number of 
steric clashes. In our experience, DCED can be used to gen-
erate conformations which more closely resemble the com-
plex than the starting unbound structure [66]. However, as 
the above example highlights, one drawback of the PCA-
based structure generation approaches is that traversals along 
eigenvectors do not necessarily correspond to low energy 
conformational transitions. In other words, structures gener-
ated from PCA eigenvectors can violate standard bond 
length and torsion angle ranges, and hence need to be en-
ergy-minimised [201]. More recently, May and Zacharias 
[202] generated PCA eigenvectors from a Gaussian network 
model (GNM) of protein flexibility [203]. Computationally, 
this has the advantage that the eigenvectors may be derived 
directly from the GNM Hessian matrix [204], although it 
appears that the GNM eigenvectors do not always span the 
conformational space between the unbound and bound forms 
[202]. In any case, for practical docking purposes, it is not 
clear whether one should energy-minimise PCA-generated 
conformations and then dock them, or vice versa. The three-
step docking model of Grünberg et al. [199] would support 
energy-minimising only in the final induced fit stage. 

MODELING INTERFACIAL WATER 

 Although solvation and desolvation effects are crucially 
important in the thermodynamics of complex formation, 
most docking algorithms neglect to take into account the 
presence of water molecules at or around the protein-protein 
interface. In a study of 46 high resolution X-ray hetero-
complexes, Rodier et al. [205] found that the majority of 
protein-protein interfaces are generally free of water, but that 
many interfaces have a peripheral hydration ring around the 
dry core. This is consistent with the O-ring or core-rim 
model [72, 73] of single patch interfaces. However, there are 
exceptions to this rule. Some interfaces can be significantly 
hydrated, especially in the case of protein-DNA complexes. 

On average, hetero-complexes have around 10–11 waters per 
buried 1,000Å2 of interface, which corresponds to around 20 
waters per complex, and the number of water-mediated polar 
interactions is similar to the number of interfacial protein-
protein hydrogen bonds. Bound water molecules are there-
fore a general feature of protein-protein interactions [205]. 

 Jiang et al. [206] describe a solvated rotamer library 
method of modeling interfacial waters, which was shown to 
help predict water locations in known complex structures. 
However, this approach has not been incorporated in a dock-
ing algorithm. As summarised above, Camacho [176] used 
short timescale explicit solvent MD simulations to identify 
key anchor side chains for subsequent rigid body docking. 
The only docking protocol to date that explicitly includes 
water molecules was described by van Dijk et al. [207]. In 
this approach, each starting structure is first solvated with a 
5.5Å solvent shell in a short MD run. The solvated proteins 
are then rigidly docking using HADDOCK, and waters are 
iteratively removed from each encounter complex using a 
biased MC procedure until only 25% of the original interfa-
cial waters remain, leaving from 6 to 12 waters per complex. 
This protocol was reported to give considerably better scores 
and RMS deviations than unsolvated docking for the major-
ity of the 10 complexes studied, which included examples of 
both wet and dry interfaces. The predicted interfaces con-
tained correctly buried waters in 17% of the acceptable solu-
tions, and near-native water-mediated contacts were ob-
served in from 30% to 66% of the near-native solutions 
[207]. Hence this approach to solvated docking would ap-
pear to be both feasible and indeed rather promising. 

MULTIMERIC DOCKING AND DOCKING SERVERS 

 Because many proteins exist and function as multimers, 
there is a growing need to be able to model-build such com-
plex macromolecular structures even if biophysical data is 
not available. Several groups have developed multimeric 
docking algorithms which typically apply symmetry opera-
tions to candidate dimers and reject those that produce intol-
erable steric clashes [208-211]. Inbar et al. [211, 212] 
showed that non-symmetrical multimeric complexes may be 
assembled using pair-wise docking techniques. Despite con-
siderable uncertainties in individual dockings, the require-
ment that there must exist a mutually compatible set of pair-
wise interactions serves as a very strong discriminator of the 
correct solution. For example, when tested on 5 complexes 
consisting of from 3 to 10 protein subunits, the CombDock 
combinatorial assembly algorithm was able to produce at 
least 1 near-native solution within the top 10 for each com-
plex, starting from both bound and unbound conformations 
[211]. 

 Several docking algorithms have been made available as 
internet servers (e.g., ClusPro [213]; PatchDock and 
SymmDock [111]; GRAMM-X [214]; M-ZDOCK [215]; 
HexServer [www.csd.abdn.ac.uk/hex_server]) or by elec-
tronic mail (SKE-Dock [216]). These services make docking 
calculations increasingly accessible to non-experts. A new 
Server section of CAPRI has been introduced to evaluate the 
performance of these completely automated docking serv-
ices. Currently, all of the above servers employ ab initio pre-
diction techniques rather than MD-based approaches. None 
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yet have links to a database, although some groups are work-
ing in this direction [104, 105]. As an alternative to server-
based approaches, the Biskit platform provides a modular 
way to construct arbitrary workflows for sophisticated struc-
tural bioinformatics modelling and docking tasks [217]. 

CONCLUSIONS AND FUTURE DIRECTIONS 

 Recent docking and MD simulation studies support a 
picture of protein complexes being formed in at least a two-
step process. In the initial collision encounter complex, rec-
ognition takes place through desolvation and burial of key 
hot spot anchor residues at the centre of the nascent inter-
face, the conformations of which do not significantly change 
on binding. This is followed by a latching phase in which 
peripheral interface residues may adjust their rotameric con-
formations into complementary arrangements. Arguably, 
there is a final induced fit step in which interface side chains 
adjust their torsion angles to adopt off-rotamer conforma-
tions and interfacial waters become frozen into their crystal-
lographically observable positions. Although this is clearly 
an idealised picture of a complex dynamical process, it is 
broadly compatible with the experimental and statistical 
studies of known protein interfaces reviewed here. 

 Existing rigid body search algorithms are now suffi-
ciently fast that covering the 6D translation-rotation collision 
encounter space is no longer a rate-limiting step in protein-
protein docking protocols. However, using explicit models 
of side-chain and backbone flexibility can involve computa-
tional costs of up to 50 CPU-days per complex, and using 
solvated MD simulations to locate hot spot anchor residues 
or to generate conformations for multi-copy docking is also 
very computationally expensive. PCA-based dimensionality 
reduction approaches seem to provide a promising way to 
generate candidate conformations for docking. However, 
PCA conformations can have poor internal geometries, 
which should be energy minimised, and cross docking mul-
tiple PCA conformations adds significantly to the computa-
tional load. It seems inevitable, therefore, that the use of 
more sophisticated ab initio flexible docking techniques will 
make increasingly heavy demands on computing resources. 
Although the cost of high performance computing facilities 
continues to fall, it is worth noting that modern graphics 
processing units (GPUs) offer potentially far greater arithme-
tic processing power than conventional CPUs, and a number 
of scientific calculations have been adapted to run on pro-
grammable GPUs [218]. For example, Buck et al. [219] have 
achieved an order of magnitude speed-up for Gromacs MD 
simulations in this way. Furthermore, 3D grid-based protein-
ligand docking correlations have recently been implemented 
in low cost reconfigurable field programmable gate array 
(FPGA) devices, which are reported to give speed-ups of up 
to 3 orders of magnitude over the same calculations on ordi-
nary PCs [220]. Similar speed-ups have been reported for 
FPGA-based MD simulations [221]. Thus it may soon be 
feasible to perform flexible protein-protein docking simula-
tions using such hardware. 

 Structural PPI databases will become increasingly impor-
tant resources for the development of docking-specific 
knowledge-based potentials and as training sets for machine  
 

learning based interface prediction software. Many of the 
CAPRI participants now use knowledge-based potentials to 
re-score ab initio solutions, and exploit biological and bio-
physical information to promote solutions that involve 
known interface residues. Using AIRs to express this infor-
mation in a generic way seems particularly successful, al-
though specifying lists of blocking residues and defining 
simple spatial search range parameters are also effective. The 
recent CAPRI results show that using experimental informa-
tion to focus the docking search or to re-score ab initio de-
coys has become an integral component of many docking 
procedures, and can significantly improve the quality of 
docking predictions. In round 9 of CAPRI, a new Scorers 
section was introduced specifically to evaluate re-scoring 
techniques, although results from this section have not yet 
been published. 

 High throughput Y2H and TAP-MS experiments and 
bioinformatics techniques are beginning to generate entire 
networks of PPIs. However, such experimental and in silico 
results are difficult to validate and can contain many false-
positives [11, 12, 222]. Hence, docking procedures could 
provide a potential way to filter physically implausible inter-
actions. But is high throughput docking of predicted PPIs 
feasible? The answer will depend on the level of accuracy 
required. Assuming suitable template structures are avail-
able, Sánchez et al. [223] estimate that the structures of all of 
the 6,400 yeast proteins can be comparatively modeled in a 
matter of days on a large PC cluster. Although such modeled 
structures would inevitably contain errors, the recent CAPRI 
experiments have shown that docking model-built structures 
is feasible. For example, targets T11, T14, and T19 each 
required a model building step, yet several groups produced 
medium accuracy or better predictions for each of these 3 
targets [40]. However, in order to dock thousands of pairs of 
proteins, each pair-wise docking must be very fast, and cur-
rent flexible docking protocols are therefore clearly imprac-
tical for high throughput purposes. Nonetheless, Tovchigre-
chko et al. [160] found that using low resolution structural 
models and FFT correlations was sufficient to recognise the 
gross structural features of PPIs as statistically significant 
clusters of orientations about the true binding site. Hence, 
using soft docking to detect low resolution energy funnels 
[224] could provide a useful way to enhance the reliability of 
experimental and in silico PPI predictions. 

 In summary, MD and flexible protein docking simula-
tions are beginning to provide a convincing physical picture 
of how protein complexes are formed. Insights gained from 
these simulations are helping to inspire more reliable and 
practical docking algorithms. The use of symmetry and 
fragment assembly constraints are helping to make possible 
docking-based predictions of large multimeric complexes. 
Making better use of the increasing availability of structural, 
biological, and physico-chemical information about protein 
interactions is helping to improve significantly the quality of 
docking predictions. In the near future, the closer integration 
of docking algorithms with protein interface prediction soft-
ware, structural databases, and sequence analysis techniques 
should help produce better predictions of PPI networks and 
more accurate structural models of the fundamental molecu-
lar interactions within the cell.  
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ABBREVIATIONS 

1D = One Dimensional 

2D = Two Dimensional 

3D = Three Dimensional 

6D = Six Dimensional 

ACP = Atomic Contact Potential 

AIR = Ambiguous Interaction Restraint 

ANN = Artificial Neural Network 

CAPRI = Critical Assessment of PRedicted Interactions 

CPU = Central Processor Unit 

DARS = Decoys As Reference State 

DCED = Distance Constraint Essential Dynamics 

ELSCA = Energy Linearised Superposition of Correc-
tions Approximation 

ED = Essential Dynamics 

ET = Evolutionary Trace 

FFT = Fast Fourier Transform 

FPGA = Field Programmable Gate Array 

FRM = Fast Rotational Matching 

GNM = Gaussian Network Model 

GPU = Graphics Processor Unit 

PBSA = Poisson-Boltzmann Surface Area 

PCA = Principal Component Analysis 

PDP = Protein Docking Potential 

PMF = Potential of Mean Force 

PPI = Protein-Protein Interaction 

LDF = Linear Discriminant Function 

MC = Monte Carlo 

MD = Molecular Dynamics 

MS = Mass Spectrometry 

MSA = Multiple Sequence Alignment 

NMA = Normal Mode Analysis 

NMR = Nuclear Magnetic Resonance 

NOE = Nuclear Overhauser Effect 

ODA = Optimal Docking Area 

PC = Personal Computer 

PDB = Protein Data Bank 

RMS = Root Mean Squared 

SPF = Spherical Polar Fourier 

SVM = Support Vector Machine 

TAP = Tandem Affinity Purification 

Y2H = Yeast Two-Hybrid. 
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