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Hex Gallery 

This page (written by Dave Ritchie) contains some example images from Hex. 
Mostly the pictures were created directly as screen-shot JPEG files, although 
several are composite screen-shots put together with The Gimp.  

Spherical Harmonics 

Spherical harmonics are 
special functions of the 
spherical coordinates, theta 
and phi. These functions 
can be thought of as 
"standing waves on a 
sphere". They are 
characterised by two 
quantum numbers, L and 
M, which together 
determine the number and 
spatial arrangement of 
nodes in each function. The 
image on the left shows 
some of these functions. 
Y(L=0,M=0) is just a sphere 
(top left), and Y(L=2,M=0) 
is at bottom right. The 
figures above the diagonal 
have M>0, and those below 
have M<0. In general, there 
are 2L+1 allowed values of 
M for a given L. Adding 
another row and column to 

the image would give 7 functions with L=3, etc. To use spherical harmonics to 
represent molecular surface shapes, we need to keep going up to about L=25, 
or higher...  
 

Spherical Harmonic Molecular Surfaces 

A surface in 3D space can be approximated by encoding the radial distance of 
surface points from the origin as a sum of spherical harmonic functions up to 
some limiting value of L:  

http://www.gimp.org/
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where the choice of upper limit L determines the accuracy of the representation. 

Each coefficient, , can be determined by an integral:  

   

We have developed a fast way to estimate such integrals using a sampling 
scheme based on an icosahedral tesselation of the unit sphere.  

This image represents the 
resulting spherical harmonic 
surface approximation of the 
molecular surface of an antibody 
VH domain, using harmonics up 
to L=14. Except for the region 
near the phenylalanine side 
chain at top right, the surface 
approximation is a good estimate 
of the true molecular surface. 
The error here is a result of the 
surface being doubly-valued with 
respect to radial projections from 
the chosen origin.  

 

Molecular Shape Comparison using Spherical Harmonics 

Pairs of spherical harmonic surfaces 
can be compared by minimising the 
"distance", between their respective 
harmonic expansion coeffients [1]. This 
is very much like a conventional 3D 
Fourier correlation, except that here, the 
correlation is a function of the 3 Euler 
rotation angles (alpha,beta,gamma), 
instead of the more usual Cartesian 
translations. The upper images show 
the minimum surface distance 
orientation of two antibody VH domains 
(HyHel-5 and KOL), separated by 36 
Angstrom in the x-axis. The lower 
images show the backbone traces of the 
two molecules in the same orientation. 
We have effectively matched the 
secondary structures using only 
geometric surface information.  
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Protein Docking using Spherical Harmonics? 

So can spherical harmonics be used to calculate how a pair of proteins might fit 
together, or "dock"?  

The image below shows the antibody HyHel-5 (left) and its lysozyme antigen 
(right) in the docked orientation, but separated by 5 Angstroms to give a better 
view of the interface. The L=12 harmonic surfaces to the right clearly show a 
high degree of shape complementarity at the interface. Arguably, if two proteins 
are to fit together at the detailed atomic level, they would be expected to show a 
high degree of surface complementarity even using these low resolution 
representations. In other words, we should be able to use low resolution surface 
shape representations to predict feasible binding orientations for proteins.  

 

However, compared to superposing similar shapes it seems much harder, 
mathematically, to calculate how to contrapose complementary surface shapes. 
The main reasons are that we now need to use two distinct coordinate systems, 
one for each protein, and we would need to devise a way to calculate the 
"distance" between just those parts of the surfaces that come into contact.  

Docking using Polar Fourier Correlations 

One way to avoid these difficulties is to use special orthogonal radial functions, 
along with the spherical harmonics, to represent each protein using a pair of 3D 
density functions instead of explicit 2D surfaces. These aren't so easy to display 
graphically, but basically the first density function is one inside a protein's 
surface and zero outside. The second density function is zero everywhere 
except within a small surface "skin" region between the van der Waals surface 
and the solvent accessible surface. Good docking orientations can then be 
found by maximising the degree of overlap between the surface skin of one 
protein with the interior density of the other, and vice-versa. Steric clashes can 
be penalised by subtracting an interior-interior overlap term from the scoring 
function. To represent proteins sufficiently accurately for a docking calculation, 
we find its necessary to use radial functions up to order N=25 or N=30, where N 
is the highest polynomial power in r, along with all spherical harmonics up to 
order L=N-1. Essentially, this means we represent the global shape of a protein 
using just two vectors of Fourier expansion coefficients.  
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This image shows some views of an antibody Fv fragment represented as 3D 
polar Fourier density expansions to different orders. A: original atom-Gaussian 
density representation; B: polar Fourier shape density reconstructed to N=16 
(1,496 coeffs); C: N=25 (5,525 coeffs); D: N=30 (9,455 coeffs). Each density 
function was contoured using a density threshold which corresponds 
approximately to the van der Waals radii of the atoms in (A). The surfaces are 
drawn as tiny connected triangles and are colour-coded by atom type according 
to a Gaussian mixing rule (based on the distance of each triangle vertex to 
nearby atom positions). Hence sharp colours correspond to an accurate surface 
reconstruction. Note the relatively low resolution towards the edges of the 
molecule, even for high order expansions. This is due to the Gaussian decay 
factor in the radial basis functions, which dominates at large distances from the 
origin.  
 

By borrowing quite a bit of mathematics from quantum mechanics, we can 
calculate how to rotate and translate these density functions by transforming 
only the original expansion coefficients. The overlap at each trial orientation can 
then be calculated simply by multiplying pairs of expansion coefficient vectors. 
This gives a full 6D docking correlation algorithm, which we believe is highly 
competitive compared to conventional grid-based Fourier correlation methods. 
These ideas have been implemented in the docking program Hex[2] which may 
be downloaded from the Hex Home Page. In addition to the above shape 
correlation, Hex also supports a similar Fourier-based calculation of 
electrostatic interaction energies, and (as of version 3.0) a molecular mechanics 
force-field method of refining candidate docking orientations.  

http://www.csd.abdn.ac.ukhex/
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The image below shows two views of the HyHel-5/lysozyme complex, as 
docked by Hex. This is a relatively easy complex to dock, as coordinates from 
the bound form of the antibody had to be used, and because lysozyme changes 
relatively little on complexation. Results with this and similar complexes, 
indicate that rigid-body docking can do a remarkably good job of predicting how 
macromolecules might interact, provided the degree of conformational change 
is small and at least some information about the binding site(s) is available.  

 

For those interested in the technicalities, the above docking was calculated 
starting from a randomly oriented lyzozyme (1LZA) placed over the antibody 
hypervariable loops (3HFL). Roughly 72 million trial orientations were generated 
by "spinning" the molecules (5 rotational degrees of freedom), and by varying 
the intermolecular distance in 0.5 Angstrom steps (1 degree of freedom). These 
orientations were scored using shape correlations to N=16, and the best 20,000 
orientations were then passed to a high resolution scoring stage which used 
both shape and electrostatic correlations at N=30 (this stage found 5 
orientations within the top 100 which were within 3 Angstroms RMS of the "right 
answer"). The best 1,000 of the N=30 orientations were then refined using a 
"soft" molecular mechanics rigid body minimisation algorithm. After 
minimisation, the lowest energy solution (the one shown) had a main-chain 
deviation of 1.25 Angstroms RMS from the "right answer" (a least-squares fit of 
the lysozyme onto the complex). The Fourier correlation part of the calculation 
took about 13 minutes using a dual 800MHz Xeon Pentium III system with 
512Mb RAM, and evaluated an average of 60,000 orientations per second (the 
peak rate at N=16 was 375,000 orientations per second). Energy minimisation 
took about 6 minutes, refining about 2.5 orientations per second. In the 
"spinning" process, the lysozyme was constrained to remain near the 
hypervariable loops. A blind (fully unconstrained) global search would increase 
the execution time by roughly a factor of 7.  

Selected CAPRI Results 

The images below show the good docking predicitions obtained with Hex for 
CAPRI targets 3, 6 and 12.  

http://capri.ebi.ac.uk/
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CAPRI Target 3: 
Hemagglutinin/Antibody-HC63. 
This is solution no. 4 from Hex. It 
has the antibody docked onto the 
A and C domains of the large 
hemagglutinin. The deviation 
between the predicted and actual 
antibody CA atom positions (Fv 
atoms only) from the complex 
(PDB code 1KEN) was 7.4A 
RMS.  

 

 
CAPRI Target 6: alpha-
amylase/antibody-AMB9. This is 
solution no. 5 from Hex. The 
deviation between the predicted 
and actual AMD9 antibody CA 
atom positions from the complex 
(PDB code 1KXQ) was 2.2A 
RMS.  

 

CAPRI Target 12: 
cohesin/dockerin (an 
unbound/unbound target). This is 
solution no. 6 from Hex shown in 
both ribbon and licorice drawing 
modes (cohesin in red, dockerin 
in yellow, complex in white). The 
deviation between the predicted 
and actual dockerin CA atom 

positions from the complex (PDB code 1OHZ) was 2.4A RMS after superposing 
the cohesin CA atoms of the prediction onto the complex (3.3A RMS deviation).  
 

Docking Very Large Molecules 

As mentioned above, the radial basis functions used in Hex fall off rapidly 
beyond a certain distance (around 30 Angstroms) from the origin. Hence very 
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large proteins (e.g. CAPRI Target 6, above) have to be docked using multiple 
localised docking runs, as illustrated below.  

This picture illustrates how 
Hex docks very large 
proteins (using the 
antibody-MCV/VP6 
complex from CAPRI 
Target 2 as an example). A: 
The antibody hypervariable 
loops are initially oriented 
towards the large VP6 
trimer; B: A low-resolution 
spherical harmonic surface 
is calculated for the VP6 
trimer (2252 triangles). C: 
The VP6 surfaces is 
smothered with spheres, 
one per surface triangle, 

and the spheres are iteratively culled until some (low) overlap threshold is 
reached; D: The remaining spheres are used to generate starting orientations 
for the antibody (here restricted to the VP6 C domain).  
 

Fun Stuff 

 
This is an image of a canine viral surface coat protein 
(PDB code 1IJS) calculated as a low resolution 
spherical harmonic surface of one of the protein 
monomers, but redrawn 60 times to show the 
icosahedral symmetry of the complete capsid.  

 

 


